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THE IMPACT OF A RIGID CIRCULAR CYLINDER
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A method is described for approximating to any degree of accuracy the solution of the following
problem: An elastic body which is bounded by a plane on one side, but extends to infinity other-
wise, is hit by a circular disk of given mass, radius, and initial speed perpendicular to the plane
boundary. The whole surface of the disk enters into contact with the elastic body at the same time
and stays in contact at all its points from then on. The disk is assumed to be rigid, i.e. it does not
allow the particles of the elastic body in the contact area to move relative to each other in a direction
perpendicular to the plane boundary. For the relative motion of these particles parallel to the face
of the disk several conditions are considered, representing perfect lubrication, various degrees of
viscous friction and perfect adherence.

With the help of various Mellin transformations a method is indicated which leads to an expansion
of the motion in powers of the Laplace transform variable. The case of perfect adherence needs
some special consideration, and a simple approximation for the static problem is found. The
case of perfect lubrication is then treated in more detail by a different method which replaces
the condition of constant normal displacement in the contact area by an equivalent number of re-
quirements for certain averages over the normal displacement in the contact area. The condition of
rigidity for the disk is not exactly satisfied, but it is possible to judge the accuracy of the approxima-
tion (with the help of asymptotic expansions in the Laplace transform variable) at the initial
time, when discrepancies are largest.

The concept of ‘mode of vibration’ is introduced. Any transient in the coupled system of
elastic body and rigid disk can be described as superposition of modes, each of which is an exponen-
tially damped harmonic oscillation of the coupled system with a frequency and damping constant
independent of the particular transient. The motion of the impinging disk is then seen to be
dominated mostly by the lowest mode, provided the mass of the disk is not too small. The displace-
ment perpendicular to the boundary outside of the contact area has been calculated. This calcula-
tion is not more difficult than the corresponding one in the case of a point-like source at the plane
boundary of an elastic solid.
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154 M. C. GUTZWILLER

Numerical computations were carried out for the case of perfect lubrication with the help of the
Elecom digital computer in order to determine the first two modes and their contributions to
the motion of the disk. As long as Poisson’s ratio for the elastic solid exceeds 1/4, the results do not
depend strongly on the value of Poisson’s ratio. The ratio of the areal mass densities of the disk to the
elastic solid is the main parameter of the theory. The shear wave velocity of the elastic solid
determines the time scale of the motion.

INTRODUCTION

The present work is concerned with the following problem of the theory of elasticity.

Let us consider an elastic body which is bounded by a plane on one side and stretches
out to infinity otherwise. Its boundary is hit by a circular disc at the time ¢ = 0 in such a
way that the whole surface of the disk enters into contact with the boundary of the elastic
body at the same time. The circular disk of radius 7, is assumed to have a known mass M
and is supposed to be rigid, i.e. it forces the particles on the boundary of the elastic body in
the area of contact at each moment to have the same displacement perpendicular to
the boundary. The condition of rigidity for the disk affects only the area of contact and the
displacement of the particles there in the direction perpendicular to the boundary. Itis also
assumed in the mathematical treatment of this problem that this condition of rigidity for
the circular disk persists during all later times ¢ > 0. It can be said, therefore, that the circu-
lar disk adheres to the particles on the boundary of the elastic body in such a way that these
particles can have no motion relative to each other in a direction perpendicular to the plane
boundary. Concerning the relative motion of the particles in the area of contact in a direc-
tion parallel to the plane boundary, a number of conditions will be considered. These
conditions represent not only the two extreme cases of perfect lubrication and of perfect
adherence but also the whole range of intermediate cases of viscous friction between the
rigid circular disk and the particles of the elastic solid in the area of contact. The circular
disk is assumed to have a speed w perpendicular to the plane boundary as it hits the elastic
solid. As the plane boundary of the elastic solid is assumed to be horizontal, the gravitational
force Mg acting on the circular disk is taken into account in addition to the total normal
stress in the contact area.

The case of perfect lubrication has been treated previously to some extent. But instead
of the impact problem as presented above, the corresponding steady-state problem was
investigated. The circular disk was assumed to be in contact with the plane boundary of the
elastic solid at all times, not only starting at ¢ = 0, and a periodic external driving force was
considered. Wolf (1944) assumed that the distribution of normal stress in the contact area
was the same as in the static limit, i.e. when the frequency of the driving force became
zero. He was then able to compute the distribution of the normal displacement in the con-
tact area for a given frequency of the external driving force. The average of this distribution
was used as an approximation to the normal displacement of the rigid disk with the correct
boundary condition (normal displacement constant in the contact area). Bycroft (1956)
uses the same approximation, but he shows, in addition, that Wolf’s assumption concerning
the stress distribution in the contact area yields a useful upper and lower bound for the
normal displacement with the correct boundary conditions. Indeed, if the stress distribu-
tion in the contact area is assumed to be the same as in the corresponding static problem,
then the resulting normal displacement at the rim of the disk is too small, whereas the
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weighted average over the resulting distribution of normal displacement with a weighting
function r(r§ —r2) ¥ is too large. Miller & Pursey (1954) assumed constant normal stress in
the contact area and computed the average normal displacement. The assumption of
constant normal stress in the contact area is, in a way, the opposite of Wolf’s assumption
of the static stress distribution. Indeed, a constant normal stress results at the first moment
if the rigid disk is given a very short mechanical impulse. Itis only natural that the results of
these other investigations can also be obtained with the present methods. However, no
detailed discussion of these previous results will be made.

The solution of the problem stated above can be approximated in various ways. For
instance, the method of either Bycroft or Miller & Pursey yields approximations to the
non-stationary problem which is considered presently. The purpose of this work is to find
a scheme of approximations which has the following qualities. (1) It can be carried to
any desired degree of accuracy; (2) it gives the excitation of the elastic body outside the
area of contact with the impinging disk; and (3) its formulae can easily be programmed
for a high-speed computer. In accordance with these goals it wasfound necessary to discuss
in some detail the mathematics involved in the scheme of approximation. Indeed, the
mathematical apparatus involves a good deal of the theory of functions of a complex vari-
able which cannot easily be replaced by physical intuition. An effort is made to find a
precise statement for the degree of accuracy with which the conditions of the problem are
satisfied. Numerical calculations have been performed in order to have explicit results
for some of the simpler quantities which can be visualized immediately. But the various
parameters of the theory are not taken through their full range, nor is there a sample
computation for every quantity which is expressed by a formula. On the other hand, there
are a few conjectural statements which might have been substantiated by extensive com-
putations or by refined mathematics. Unfortunately, the author did not have the skill for
either, and he asks for forgiveness since none of these statements serves as a hypothesis for
any following derivation. The content of this paper will be described in the following
paragraphs in order to help the reader in finding his way through the many mathematical
details.

The basic equations of the problem are given in §1. A Laplace transformation is applied
to the time variable ¢, and a Hankel transformation to the radial variable r. The boundary
conditions are chosen so as to describe various situations in the area of contact. The main
special cases are perfect lubrication (vanishing shear stress in the area of contact) and per-
fect adherence (vanishing tangential displacement in the area of contact) between which
there are various degrees of viscous friction (shear stress proportional to tangential particle
velocity in the area of contact.)

By a number of Mellin transformations the problem is formulated in §2 as a relation
between analytic functions whose singularities in certain parts of the complex plane are
qualitatively known. In the case of perfect lubrication this leads to a recursive scheme for
finding an expansion of the solution in ascending powers of the Laplace transform variable p
(descending powers of the time variable £), but only certain qualitative features of this
expansion are retained for the further development.

The solution for the case of perfect adherence can also be expanded in ascending powers

of p, as will be shown in §8, but starting with the quadratic term, the logarithm of p will
20-2
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also appear. Moreover, an infinite set of linear equations has to be solved for each power of
p- This set is solved by a convergent expansion in powers of (b/a)*, where b is the shear wave
velocity and a the velocity of the compressional waves. This method is applied to the
stationary problem (p = 0) of perfect adherence, and gives a good approximation in terms
of elementary functions.

The problem of the impinging disk with perfect lubrication is formulated differently
in §4. A finite expansion of N-+1 terms is assumed for the normal stress ¢ in the contact
area, with each term (n = 0, 1,..., N) characterized by its dependence (1 —72/r§)*~* on
the radial variable r (with 7, the radius of the impinging disk). Such an expansion was
previously (§2) shown to be equivalent to an expansion in powers of p up to p2¥. The normal
displacement u can then be expressed directly in terms of the assumed expansion of ¢.
As a check, the proportionality between the normal particle velocity and the normal stress
in the area of contact at the time of impact ¢ = 0 is established.

The coefficients in the expansion of ¢ are determined in §5 by imposing N+ 1 require-
ments on the corresponding displacement u. The zero-order requirement insures the
balance between the inertia and weight of the impinging disk on one hand, and the
sum of the stresses ¢ in the contact area on the other. The remaining N requirements tend
to make the normal displacement « in the contact area as flat as possible, by making u
orthogonal to a certain set of N polynomials. The quality of this procedure can be expected
to be worst at ¢ = 0. Therefore, the normal particle velocity as given by this method at
time ¢ = 0 is established with the help of certain asymptotic expansions, for N = 0,1, 2, 3, 4.
This constitutes the main criterion for judging the accuracy of this scheme of approxima-
tion as a function of N.

The motion of the disk as a function of Z is obtained in § 6 by inverting the Laplace trans-
formation with the help of the standard procedure of integrating along the imaginary axis
of the complex p plane. This integral can be reduced to a sum over the residues of poles in
the negative p plane. The locations of these poles, i.e. the complex frequencies associated
with them, depend only on the boundary conditions, but not on the particular manner in
which the disk is set into motion, e.g. by impinging at a given speed w. Tht motion of the
disk appears therefore as a superposition of exponentially damped, harmonic oscillations
which are called ‘modes of vibration.” Each mode is associated with an exponentially
damped, harmonic oscillation of the whole elastic body which satisfies all the boundary
conditions.

The disturbance which travels along the boundary of the elastic body outside the area
of contact is considered in §7. The method of computation is essentially that of Cagniard
(1939), but the source of the disturbance is now extended over the whole contact area,
whereas usually only point-like sources are considered. The derivation is somewhat com-
plicated for the terms # = 1, ..., Nin the expression of ¢, although the result is not any more
involved than for the term n = 0.

Finally, §8 is devoted to the numerical work on the problem. All the transcendental
functions which occur in this problem are entire functions of p. It is therefore natural to
use their power series expansions, in particular since their coefficients are obtained by
three-term recursion formulae. The first two modes are obtained from an expansion of o
with only three terms (N = 2) for a set of parameters a2/b? and a certain ratio ¢ of areal
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mass densities involved which is the only other parameter of the problem as long as the
potential energy of the disk due to its weight is neglected compared to the kinetic energy at
impact. Various results are plotted, and the period and damping constant of the lowest
mode are given in a short table.

1. THE MIXED BOUNDARY-VALUE PROBLEM

A cylindrical co-ordinate system is used, such that the semi-infinite elastic body is at
z > 0 and the centre of the impinging disk at » = 0. Because of the cylindrical symmetry
of the problem, there is no angular dependence, and it is assumed that all displacements
are restricted to the 7z planes. This leaves only the axial (vertical) displacement z and the
radial (horizontal) displacement v to be considered.

A

l

Yz

Lamé’s constants for the elastic medium are called A and #; a is the velocity of the com-
pressional waves, b is the velocity of the distortional waves. In terms of Poisson’s ratio, v,

a?  A+2u 21~V

2 %
k= b2 1—2v° (1)
Two potentials ¢ and ¥ are introduced by
_ 0 10 0P Y
95 T g (), v=at—o (2)
With the symbols 2y
10 ([ g\ 0% d
A=y lar)ta o= G 5v) 1ok )
the equations of motion for the elastic body are
d (0% % .\
(o~ )~z (G =) = o
R SR ’
9z \de ar \o2 N
The normal stress o and the shear stress 7 at the boundary are
0 1 92
o= (2 A—2u Br( ﬁf) r(?r&z(%)]
()

_ 0% o
T ot 20 (35 o)
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It is assumed that the impinging disk gets into contact with the semi-infinite elastic solid
at time ¢ = 0, and that there is no strain in the elastic solid prior to this time. Ifitis assumed
in addition, that for each time ¢ > 0 the disturbance has not yet advanced beyond a certain
finite depth z, then the equation (4) reduces to

2 2
2 en=o0, 2 _pu—o. (6)

As all events start at time # = 0, it is natural to consider the one-sided p-multiplied Laplace
transforms (indicated by attaching a star to the symbol) of the quantities involved, e.g.

% o dea-pt
y pfoqﬁel’dt.

A useful solution of (6) is then
5 = [ @)y (Fo) e emedn, a4

b= [V (o) e 0scp, 8- 110, o

Jy and J, are the Bessel functions of order 0 and 1. From (7) and (2) it follows that for
z=20

” :éf: (—a®+p¥) J, (";lp) dp,
w (8)
ot =4[ (= pp0) 1 (o) .

Similar formulas follows from (7) and (5) for ¢* and 7%*. If Hankel’s theorem (see Watson
1952) is applied, the functions ® and ¥ can be expressed in terms of ¢* and 7* by

pL(1 422 a2 @ = p (14207 [0 gy (o) rar—2p2p oo, (B )t

o - ( (9)
U (1+2p%)2—4p?af ]V = 2p% fo o*J, (%rp) rdr—p(1-+2p?) f{_} ™*J, (%Tp) rdr,

where ¢* and 7* are evaluated at z = 0. By means of (8) and (9) the displacements at the
boundary z = 0 of the elastic solid can be directly computed from the stresses at the bound-
ary. Equations (8) and (9) are the basis for all further arguments.

The problem of the rigid circular disk of radius 7, and mass M impinging with the speed
w on the plane boundary of a semi-infinite elastic solid is now stated in the following manner.
It is required to find stress distributions ¢* and 7* in such a way that

0¥ =0, 7 =0 for 7r>r, (10)
u* = h(p) independent of r for r <7, (11)
Dupv* = (1—D) br* for r <7, (12)
M[p2h(p) —pw] = szwf”’a* rdr+ Mg; (13)

0

where u* and v* are given by means of (8) and (9) in terms of ¢* and 7*. £(p) describes the
motion of the disk. This motion is determined by condition (13), if it is assumed that for all
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times ¢ > 0 the disk stays in contact with the boundary of the elastic body at all its points.
Condition (12) describes the radial motion of the boundary of the elastic body in the contact
area with the help of a friction coefficient D whose values are restricted by the inequality
0<D<1.

2. APPLICATION OF THE MELLIN TRANSFORMATION

The theory of the Mellin transformation is used very frequently in this section. For
convenience some formulae are listed below (for a proof see Titchmarsh 1937).
The Mellin transform g(s) of f(x) is given by

— f : F(x) x+-1dx, (14)

which is supposed to converge for all complex s in a strip ¢’ < #Zs = ¢ < ¢". The inversion

formula
1 c+ico

J@ =5 [ o) aeds (1

2m J .-

holds for all real ¢ such that ¢’ < ¢ < ¢”. An integration such as (15) will usually be written
without limits on the integral sign, because the factor in front of the integral sign implies
that the path of integration in the complex s plane is parallel to the imaginary axis with a
real part # s = ¢ subject to some lower and upper bounds ¢’ and ¢”. For example,

[T A A e = o 19 g2(5) ds (16)

for % s = ¢, provided the Mellin integral (14) converges with f,(x) for Z s = 1—¢ and with
Jfo(x) for Z s = ¢, the results being g,(s) and g,(s). Of special importance in this investigation
is the Mellin transform of the Bessel function J,(§x) which is given for —n < #Zs < % by

the formula L N
@ - N 25~ 5 s+n ;
f () w7 e = e T (17)

where the gamma function occurs on the right. The relation between u, v and ¢, 7 is simpler
when Mellin transforms are considered. Therefore define ¢ and ¥ by

o= [ a0—p®)pdn, ¥ = [ (00— (18)

and apply (16) and (17) to (8). The result is

- b oni f ¢ 2i“13~2:_j) ([97

ds
p v (72 U[3(A48)] (o)~
N L v ) (’b‘) ds. (19)

Therefore it follows from (14) and (15) that

=[0G ) e
o = [ () g ) LH Ne. @
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Again, define the Mellin transforms
_ B 0 i s—l—(lt _ B 5= ld,
7(s) = Jo 7 (To) Hro’ s) = f ('0) pry’ (=1)
u, v and 7, 7 are dimensionless. Apply (16) and (17) so that
i pr prg 1 3(1+9)] (prop\ =~
fo a*jo( 7P )rdru J (1— F[2 1~s)]( 3b ) ds, 2
°° pr ";LZ_L _ L(1-+3s) (prop
fo T*J) (-b—p) rdr = 29 2ﬂiJ~T(1-5) (1 —15) ( 2‘2 ) ds.
If (9), (18), and (20) are combined, it follows that
—oy () 1 PL3(1—s")] Py g
—u(s) = Pi(lt%%} Q;lfa(l +5') [%m)-P(S —5) (727)0) ds
M'ds) 1 (. AT(1—3s) =, Pro\ ™ 4
Fr( g T P O (5) 8 )
a(s) — L] 1oy A TEA= 50 o (2 4
—7(s) = I‘[;—(?:—s) 27&]0(1 +s) [—2%(1+s’)] Qs —ys) <2b0) ds
PO 1 ro g PO peo o (270) ™ g
IR sz) O p g K0 (5) a0
where the functions P(s), @(s), and R(s) are given by
PO (W
0 — 11 92 2 -2 42 p
Q(s) ‘“f dp{p(5+p>—J(1+p?) J(E2+p ))‘ (1-202)2—4p2 (k24 p%) J(1+ %) (24)

. 0

R (s) 5/(1-+p?)
The variable of integration s of (22) has been replaced by —s’ in the derivation of (23).
The formulae (23) will be evaluated under the asumption that —1 < # (s'—s) < 0 and
0 < Zs" < 1. These limits are obtained from the following requirements. z and » can be
expanded in powers of 7, so that 0 < Zs < 1. ¢ and 7 can be expanded similarly so that
—1 < Zs" <0, because 7 and 7 occur in (23) with the argument 1+s’. The condition
—1 < 2 (s'—s) < 0insures the convergence of the integrals (24). These three requirements
are easily seen to be compatible with each other.

The integrands of (24) can be defined in the complex p plane with two cuts, one along the
positive real axis and another connecting the branch points 4-iand 4-i£~!in such a manner
thatit crosses the real axis at a negative point. The phase angles of p, , and § are then defined
to be zero on the upper part of the cut along the real positive axis. The integral from 0 to
oo can be expressed in terms of a contour integral going around the cut along the real
positive axis. This contour is then deformed into a contour which encircles counterclockwise
the cut through the branch points +i and 4-1£~!. Finally a new variable of integration
pe~im is introduced, which means a rotation of the complex p plane by 180° carrying cuts
and contours along. In the new plane (again called p) the two cuts are one along the nega-
tive real axis and the other through the branch points 41 and 4-i£~! crossing the real axis
at a positive point. To the right of these two cuts p, «, and £ are now defined to have zero
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phase angles and the new contour of integration C encircles the branch points +iand -£ik~!
counterclockwise (cf. the sketch of the complex p plane with the two cuts and the contour
of integration C). After these manipulations and with the help of the formula

B

I(s) T(1—s) = oo—, THT(s) =25 D) +1)] (25)

sin 7s’

(cf. Whittaker & Watson 1952) the integrals (24) can be written as
P(S)‘l D(—3s) D(z+25) P(s)
1

m

Q(S)I =737 —éﬁ;@m()@)a >
R(s) [(—35) I'(3+4s5) R(s)
P(s) (1/m) P(1+3s) I'(5—3s) 3/ (k2 +p%)
_ 1 1 p°dp L2
Q(s) = E&@?ﬁ %-[0(1‘1‘2/’2)2*4,02&/? p(F+p2—apf) . (26)
R(s) (1/m) P'(1+35) I'(3—39) 3/(1+p%)

The I' functions factors have been chosen in such a way as to exhibit the poles of P(s),
Q(s), and R(s), but make P(s), Q(s), and R(s) regular throughout the s plane, as can easily
be shown. Indeed, the contour integral can be evaluated if 5 is an integer by deforming C
into a large circle with the centre at the origin of the s plane. This is permissible because for
integer values of s the integrand of (26) can be defined in the complex p plane without the
cut from —oo along the negative real axis to 0. If s is an integer > 0, and the contour C
is deformed into a large circle, it is necessary to expand the integrand for large values of
p and retain the term in p~!. If s is an negative integer, the integrand has a pole at p = 0
whose residue must be found before the contour C can be deformed into a large circle, which
is then found to give no contribution to the integral. Finally, itisnoticed that the expansions
at infinity or at zero contain either only even or only odd powers of p, and that the contour
integral (26) vanishes for integer values of s if there is no term p~!. The corresponding zeros
of the integral in (26) have been cancelled by the poles in the I'-function factors appearing
in (26). In this manner it is found, for instance, that
1 k2

PO) = RO) = =y A0 == g gy (27)

21 Vor. 255. A
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Because of (10), 7(s) and 7(s) as defined by (21) are regular for Z s > 0. Assuming proper
behaviour at infinity for the various functions in the integrand of (23), the integration over
s" is performed by pulling the path of integration to the right. With the new functions

M(s) = _Egi}_%gﬂ(s)’ 72($) = '—g'f—:—igﬁ(s),
12 2 1 12 l (28)
66 =[BT+, G = pat ),

the relations (23) become after some reduction

n(s)  cosgsm Co(s+2m) [ pro\2m 2 Gy(2m - 2) [ pro\ s
T(s) ~ sin kom 2 o T(s+2m) (%) " eem - 20T (2m+2) 7) Qzm+2-) |

Gi(s+2m) '(m+3) (pry
*z @mmnmuﬂb)mm)

m% (i (2m+1) I(m+1—1s) (ﬁ@
meo L'(@m+1) I'(m~+3—3s) \ &

o(s)  sin ()7 Ci(s+2m) (pry\2m o ¢ (2m1) [pro\mti=s
T(s) = cos (49)n ZOF@+2m)(b) Qram)— 3 ot (Bo) (Qem+ 1) |

m“OF(Qm”} )
C(s+2m) D(m-+3) (pro
+Zr@wmnmuﬂ )R@m

Eo(2m-2) T (m+3—1s) (pro\ 22—
mz() I'(2m+2) I’(m+2—~s) ( [,) R(2m+-2—j5).

2m+1-s
) P(2m+1—s), (29)

(30)

From the asymptotic formulae for P(s), @(s), and R(s) for large s and from the assumed
algebraic behaviour of {;(s) and {,(s) it follows that (29) and (30) converge for all values of s
and p.

The boundary conditions (10), (11), and (12) are equivalent to the following require-
ments

(1) ¢ (s) isregular for Z s > —1 except for a first-order pole at s = 0;

(2) &(s) is regular for Zs > —1;

(3) #,(s) is regular for # s < d, where 0 is a sufficiently small positive number, except a
first-order pole at s = 0 with residue equal to (—1/./7) &(p);

(4) the function

DLy, (1-D) SE T s 1) G (5—1) (1)

is regular for Z s < 4.

Ifitis assumed that ¢* and 7* can be expanded in powers of 7/ry, then {;(s) and {,(s) have
only first-order poles, which are located at the negative integers. In particular, {,(s) has
poles only at the negative even integers (including of course 0) and {,(s) has poles only at
the negative odd integers.

In the case D = 0, it follows directly from (12) and (10) that 7* = 0 and therefore
{,(s) = 0. The right-hand side of (29) reduces to the last two lines, which has to vanish for
s = —2n (where 7 is a positive integer) and equals — (1//7) &(p) for s = 0. If the residue of
(,(s) at s = —2n is called ¢,(y) with y = pry/b equation (29) shows that an expansion of
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¢,(y) in powers of y starts with a term y”*2* if the expansion of ¢,(y) starts with a term y.
It follows from (13) that an expansion of ¢* in powers of y starts with a constant term if the
weight Mg of the disk is taken into account, and with alinear term if the weight is neglected,
so that only the velocity term pw remains in (13). Therefore {;(s) can be written as

6) = 3 20 4.0) =g d, Byt ), (32)

where v = 0 if the term Mg in (13) is kept, otherwise v = 1.

The coefficients in the power series ¢,(y) can be determined successively, i.e. without
solving simultaneous equations. This necessitates a detailed writing of the condition (13)
and the equation (29) for s =0, —2, —4, ... in terms of these coefficients, and leads to
straightforward but very lengthy computations. Therefore a different approach has been
used in the special investigation of the case D = 0. From combining (28), (21), and the in-
version formula (15) it is found that

72 m-}%
=3 fl0) (1=5) (33
with fm(y) = Iw((—l)m) E F(E(il_{m—_li_)l) ¢n(y)

Therefore an expansion of the functions f,,(y) again starts with a term y*" or y*"*! according
to whether or not the weight term Mg is kept in (13).

The cases D > 0, i.e. the cases of viscous friction and perfect adherence, cannot be
treated in this simple manner and no attempt will be made to derive a formula which would
be similar to (33). As a formula like (33) is necessary in order to apply the method which was
used in the special investigation of the case D = 0, i.e. the case of perfect lubrication, no
quantitative results can be stated for the cases D > 0, unless these cases can be shown to
be close to the case D = 0, at least under some additional assumptions concerning the con-
stant kin (1). Although there is only the physical intuition to support this view, it seems that
among the cases D > 0 the special case D = 1 (perfect adherence) is the furthest removed
from the special case D = 0. It also has the advantage of not introducing a new parameter in
the calculation, such as the coefficient D of viscous friction in (13). It is therefore considered
as the most interesting for an investigation of the relation between the cases D > 0 and the
case D = 0.

3. THE CASE OF PERFECT ADHERENCE

A partial fraction expansion

a6 =3 80 g~ 3 P (34)
is assumed in analogy to the case D = 0. The two expansions (34) are equivalent to expand-
ing o directly in terms of (1 —72/73)"~%, and 7 in terms of 7 times (1 — r2fr2)ntwithn =0,1,2,....
But compared to the expanison (33) the information is lost that ¢,(y) or ¥,(y) in these ex-
pansions (34) have a lowest power y?» or y?**1 in their dependence on y. A set of equations
for the residues ¢,(y) and ¥,(y) results, if one puts s = —2/in (29) and s = —2/—1 in (30)
with the integers / ranging from 0 toco. The left-hand sides of (29) and (30) vanish for these

21-2
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values of s, except for s = 0 in (29) where it equals — (1//7) A(p). The equation of motion
(13) for the rigid disk follows from (15), (21) and (28) as

Mg —pu) = 2 mpy 3 S0 a, (35)

The functions ¢,(y) and ¢,(y) will be expanded around the point p = 0 (or y = 0), but
it is not possible to have a simple power series, because terms containing log y cannot be
avoided. Such log y terms arise from the first part of (29) and (30), where it is necessary to
consider the limits s - —2/ and s - —2/4- 1 in order to cancel the zeros of the denominator.
The terms in the expansion will be ordered according to increasing exponents in the powers
of y, so that

buy) = 2y (), Yuly) = § v (v), (36)
where lim ¢ (y) 4= 0, Lm ¢ (y) == 0,
y—>0 y—>0
but limydin(y) =0, Limyyi(y) - 0.
y—>0 y—>0
In the same way 2(p) is expanded as
WP = 3 o (), (57)
with lim 2™ (y) == 0,
y—=>0
but lim yAt(y) = 0.
y=>0

If the weight term Mg is taken into consideration in (35), the cxpansions (36) and (37)
start indeed with a term m = 0. Otherwise they start with a linear term.

For the lowest term in the expansion (36) the equations (29) for s = —2[ and (30) for
§ = —2[—1reduce to
_4(1—k7) O©F  — H0_ v
A KO by, = ¢ 21§ﬁ2n+1’
o (0)
— O S < —
0=V 3 ™ g (38)

mn

where (27) has been used. (§
The next term in y gives

4(1—k?)
N

is the Kronecker symbol; 4, = 1ifm = n, 4, = 0ifm =+ n.)

mn

@ (0)

3 Ve S p(1) oy 23

A

mk? Sy —2[+2n+1 J
0 — 'ﬁ(l)_l_ § ¢(1) ...... ("}Q)
ﬂk2 —2l—1+2n" o

Because of (35) the ¢{? and ¢ have to satisfy also

o ) ) ¢("0) M
N/2Iur0n§02 _+_1+ g:O:

2,./2urd Z 2¢:_1+Mwb = 0. (40)

Similar equations are obtained for the higher terms in the expansions of ¢,(y) and ¢, (y).
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The equations (38), (39), and the analogous equations for ¢?, ¥*?, etc., always have the
form

Otl—__k—2 % Cnlﬂn = a,
n=0

f—k23 Cpa,—=b, (41)
n=0

1 1

n= iy (120 #=0). (42)
It should be noted that the equations for ¢{2’ and ¥ have, in the notation of (41), all 5, = 0
evenifk~—2 = 0. The cases D = 0 and D = 1 do not coincide even if =2 = 0 for that term and
all the higher terms. The quantities ¢, and 4, are known from equations (29), (30), and (31)
except a,, which is obtained from the additional condition
< all —
2 Gnki o

n=

(43)

where ¢, is known from (85). As Poisson’s ratio is limited by the condition v > —1, the
parameter 2 has a lower limit which is given according to expression (1) by the inequality
k2 > 4, Tt is therefore natural to expand the solution of the linear equations (41) in powers
of k2.
With the help of matrix calculus the equations (41) can be written as
a= a+k-2C’"ﬂ',}

B = b+k2Ca. (44)

& is the vector (&, ay, ...) etc., C is the matrix (C,) and C’ the transposed of C, i.e. ' is
obtained from C by switching the indices of its elements. From (44) it follows that

+k-2C'b+k4C'Ca,

Z=a
f=b+k2Ca+k-*CC'f.

Therefore (with N being any positive integer)

a— '3 fim (C’C)m] (@--k-2C'B) + k- (C'C)Vg,
m=0

p=[ 3 kmceym] @iy ci-ee !
It is shown in appendix A that
(CONy <t gy DL ae ] VR @
With the abbreviation .
4= 3 1Cal Ty
it follows also that (C”C)NJr2 lu < C'Cly —k% 3—77;7%?2]“1. (47)
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The expressions (45) for @ and f converge for N going tooo to a solution of (44) provided
322 .
k> [(Foa) = 1265433 (48)
and the series OEO: d,|a,+k"2(C'D),],
n=0
S T e kCa) (49)

converge. It can easily be shown that for large n, d, behaves as (n+1)~* log (n+1). Condi-
tion (48) is actually weaker than £2 > % which holds as a consequence of (1).

Consider now in particular the static limit which is obtained by letting y go to zero.
The solution results from (38) and the first part of (40). As a first approximation, one may
take

4(1—£72) )
o=~ HL2ED o,

(50)
4(1—k2
I p— _L,J;r_) HOk-2C O_l
With the help of (40) and of the formula
< 1 _ YA+ -9 ()
D G- (&)
where ¢ is the logarithmic derivative of the I' function, it follows that
Mg 1
Gi(s) =— o Jmurl s’
_ Mg Y30 +9]-yE) -
Go(s) = RENLT ks (52)

"The corresponding (transformed) normal and tangential displacementsare directly obtained
from (29) and (30) by inserting (52) and letting y = pr,/b go to zero. With the help of (28)
it results that

N Mg I'(4s)

76) = g T+ 1)1

76) = — ks T W 0 v |

~—~
Tt
o

~

_ M PRO—9]  PEs—1) 1l
u(s) = 8 Jmurs (f—k 2) {sI‘(1~—;s) 2nk T [1(1+5)] Y[z %“S)]‘“%(z)]}: (54)

o Mg I'(—%s) sindsr 1
v(s) = —SJﬂﬂr2 (1—k72) 2k2T'[%(3 )] {cos 1s71 7

From (15), (20) and (21) it follows that

AR -v@)) (s9)
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Mg ™\t g, r?

= %—g ( ——;%) W;log (]. *““;(2;) fOI' r << Tos (57)

0 - for 7>y

. Mg 4 (T :

u = Surs(1—F7) I:l +7I2/€4‘f(7’0):| for r<ry;
v=20 for r<r,. (58)

The function

S(x) =272 (1+/(1—4%) log /(1 —5%) — /(1 —x?)) (59)

increases monotonically from 0 at x = 0 to 1 at ¥ = 1. This latter value is reached with
vertical slope. The star indicating the ‘p-multiplied’ Laplace transform in (56), (57), and
(58) has been omitted, because in the limit of p going to zero this transform becomes equal
to its original taken in the limit of ¢ going to infinity, i.e. the static limit.

It should be noted that the stresses and displacements as given in (56), (57), and (58)
are in equilibrium, if they are applied to the plane boundary of a semi-infinite elastic solid.
But one among the postulated boundary conditions, namely that the normal displacement
u is constant for r < r,, is not satisfied, where the other boundary conditions are fulfilled.
Analogous solutions for the higher powers in pry/b can be obtained in a similar way; e.g.
the linear terms in pry/b result from (39) and the second part of (40).

4. THE NORMAL DISPLACEMENT DUE TO CERTAIN STRESS DISTRIBUTIONS
If the case of perfect lubrication, i.e. D = 0in (12) or 7* = 0, is investigated, the formula
(33) suggests as a good approximation for the normal stress ¢* due to the impinging rigid
disk in the contact areax < 1

o* =y % Loly) (=22t with x = —;, Y :Z)—Zﬂ, and ¢* =0 for x>1. (60)
n=0 0

In the case of perfect adherence, a quite similar treatment of the problem could be given if
in addition to the expansion (60) for ¢*, the shear stress 7* in the contract area is expanded
in terms of 7 times (1 —72/r2)"~* with n = 0, 1, .... But the algebra to be performed would
become more complicated. Condition (11) cannot be satisfied exactly, but the approxima-
tion should be good for small values of y, which means for slow motions of the rigid disk.
The most logical method to compute z* corresponding to (60) would be to combine (19),
(20), (21), (28), and (29) using the fact that 7* = 0. It has been thought desirable, however,
to obtain this result independently of §2, because the condition 7% = 0 introduces some
simplifications in the argument. With the help of the formula

[ =t ay@nxdr = 2 DD E1 4 @), (61)

it follows from (8) and (9), with the boundary conditions ¢* = 0 for x > 1 and 7* = 0 for
x > 0, that

N o a t-n
ot =1, 3 DDA [ gt () Tealo) ). (62)

The integral over p has now to be brought into a form which allows its numerical evalution.
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If the power series for J,,,; and J, are multiplied term by term, one obtains

e} " B \
(,322) Juiy(9p) Jo(xyp) = 2 I‘(/I+1() I‘z)z:—%%l) (%y) AF(M/I, A3 15x2).  (63)

A=0

The hypergeometric function F(—A, —n—2A—4%; 1; %) can be expressed differently by the
use of the formula

Fla,b;c;7) — (.lwz)‘“F(a,cf—b;c;i—ii), (64)
With the new variable £ defined by
' 1442
x =tanh{ or 2= cosh 2§ (65)
and the integral representation
F(—A,n+3+2;1;%(1-—cosh2f)) |
B R ) BN R ICE)  e e (o6)
mJ s 2cosh§ Jie*—77) (1P —e%)}

(cf. Appendix B), the expression (62) for z* becomes
_ o < 1 J' o dy
u¥* = - cosh§ ngo L(n+3%)/.(y) e JE= ) (2= %))
X R (Nﬂﬁ}f_l:/_{“}) et [ ” adp S (—1D* ( Yy )2“1.
Jo £

2cosh§ 2 cosh

(15207 — 4% 2, DL+ 1) T(n£ §0)
(67)

Therootsin Z( )%*!are the same asin (66). The interchange of the p integration with the
5 integration can be justified because

< (—1)2>A (—1)"(1 d)” sin 2{

EOF(AH)P(H%H) N N

so that both the p integration and the 7 integration are absolutely convergent. This can be
verified at once using the power series for sin 2{. The power series (68) is now written as an
integral of Barnes’s type.

S (—1)re 1 T(=s)

. — R VN S o1
EOF(A-H)P(H%H) omi F(n+g~+s)€ ds, (69)

(68)

where the path of integration is parallel to the imaginary axis of the complex s plane
with a negative real part. After the sintegration has been interchanged with the p integra-
tion, the second line of (67) becomes, by the use of the formulas (24), (25), and (26),

1 [ 2n? P(25s+1) ny )2x+1 ,
577i_fsin~fﬂ1“(n+%+s)1“(-‘g~+s) (2coshg ds, (70)

where the integration has to be restricted by the condition —1 < % s << —% in order to
make the interchange of integration legitimate. The expression (70) is evaluated by pulling

the s integration to the right across the poles of the integrand at s = —4, 0, +4, 1, etc,,
giving
o '(1+3) P'(n+1+44) \2cosh§) -
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If this is inserted into the second line of (67) and formulae (66) and (64) are used to evaluate

the integral over 5, one ﬁnally obtains

(72)

Whereas P(1) depends only on the constant 2 of (1), the hypergeometric functions depend
only on 7, i.e. the assumed stress distribution in (60).

Formula (72) gives an expression of «* in powers of y with increasing exponents. It is
possible to obtain from (70) an expansion of z* in powers of y with decreasing exponents.
To this end insert (26) into (70), interchange the p integration with the s integration, and
insert the resultinto the second line of (67). The resultis

e -
e (% —7?) (P —e7%)}

NG }—IJ{ LH L 1adp
x.%( ~2coshé ) 2m J ¢ (1+2p2)%2—4p2f

u* = ——2—cosh§ Z I'n+13)

QWF(—S ony )2s+1
2711 fsm 2ns '(n+3+5) (2 cosh§ ds, (73)

where the s integration is still restricted to —1 < %s << —4%, and the contour C encircles
the points --iand -+ik~! counterclockwise, but does not cross the negative real axis including
the origin of the p plane. The absolute values of p along C has therefore a finite upper bound
and a non-zero lower bound, and its phase angles are bounded by —47 and -+ }7. The s
integration is therefore convergent, if the phase angle of y is bounded by —jm and -4,
and an asymptotic expansion for large y is obtained under this condition, if the path of the
s integration is pulled to the left across the poles of the integrand at —1, —3, etc. The first
term in the asymptotic expansion of u* for large y becomes with the help of (64) and (66)

~Z’/cg ngofi(yiol (1—a2)4, (74)

provided f, (y) has the limit f,(c0) as y increases indefinitely. Now the limit of ¢* as y goes
to infinity equals ¢ at ¢ = 0. Also the limit of pu* as y goes to infinity equals du/d¢ at £ = 0.
If follows therefore from (60) and (74) that

10u 1
lim l 0. 75
150 b ik t—g)l/‘ (75)

This last equation can actually be derived in a simpler manner.

5. DETERMINATION OF THE STRESS DISTRIBUTIONS

The boundary conditions (11) and (13) cannot be satisfied rigorously with the assumption
(60). However, a scheme will be proposed which determines the functions £,(y) in (60) in
such a way as to approximate the conditions (11) and (13). The main justification for this
scheme is that it can be reasonably expected to achieve this approximation, and that it
leads to relatively simple formulas which can be handled by a high-speed computer. But no
general argument has been found which would distinguish this scheme from similar ones
as being the best in some sense.

22 Vor. 255. A
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The boundary conditions (10) and (12) are satisfied with the assumption (60) and 7* = 0.
The properties of u* are especially important at the rim of the rigid disk, i.e. for x close to 1.
Therefore u* is expressed in terms of § = /(1 —&?) rather than x itself. »* is then expanded
in terms of the even Legendre polynomials P,,(£). The coefficient C, of Py, (§) is given by

1
(4v+1) f:u*PQD(g) df. In particular C; = fou*dé, because Py(£) = 1. Also, the mean

1
square deviation of «* from Cj, i.e. f (u* —C,)2dé, is equal to
0 .

) C’Z
z 4

=1 4:V+1 :

If the condition (11) were satisfied, this last sum would vanish. With the assumption (60)
one can at least choose f,(y) such that C, = 0 for v = 1, ..., N. This leaves the possibility
to impose one further condition on #*, namely (13), where A(p) is now replaced by the aver-

1
age 2 f u*xdx.
0

Condition (11) is now replaced by

f w*Py, [/(1—17)] J(i‘dxxz) 0 for v=1,..,N; (76)

i.e. the displacement «* which results from the stress distribution (60) is required to be
orthogonal to the even Legendre polynomials of order greater than zero with the argument
J/(1—4?) and a weight function 1/,/(1—x2). Condition (13) is replaced by

1 1
M[pzf u*2xdx~]7w:| = 27rr(2,f oc*xdx - Mg, (77)

i.e. the equation of motion and the initial conditions are postulated for the average of the
displacement which results from the stress distribution (60).

Because of the strong convergence of (72) the integrations (76) and (77) can be performed
in each term of the series (72). According to the results of appendix C the conditions (76)
and (77) can be written as

n 2 ~/ 2 ) ?) — Ty
§ 2 (n+-11,00) [ 96, (0) + L0 1.3...(2;24;'1”)] ~J2 Jagr (™)

2 2T (n+3)1(y) Hy(y) =0 for v=1,2,..,N, (79)

P(3n+3A4+-3) T'@n+3A+5) TEA+E) (— 1)"1’(/1)
G 2 2 2 A 0
D = 2 NG T e DA sy @ (6)
DALY (SDWPR) o
Fl+v+41) A1) ’
‘ (81)
where coefficients with a I" function of negative integer argument in the denominator are
supposed to vanish. As P() behaves like an exponential of A (cf. the expression of P(s) in

terms of hypergeometric functions as derived in §8, cf. also Watson (1918)), the serics (80)
and (81) converge like the power series for exp. (2y).

ORI R N Ch 7SR NCUER TSR NCIER )
) = & T F =yt ) (kv A4 DTG+ 1)
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The asymptotic expansions of G,(y) and H,,(y) for large y are determined in appendix D.
For real positive y the first term in the expansion is

/2 1
» Gn(y) ~ (27l+ 1) Jﬂky (82)
H(y) ~ 10/%;2‘%;‘ | (83)
H,(y) ~ Lv+1) 271 (n) L for n>o. (84)

(—=1)knl’(v+5H T'(n—v+5 D(n+v+1)y

If these expressions are inserted into (78) and (79), the limits f,(co) can be obtained by
solving the system of linear equations. From (60) and (75) it follows then that

lim = 1 0u

im 5% 31—at)t for N=1,

H

=5(1—x2)}-3(1—-x2)¥ for N=2,
11— 31— I(1—22)t for N =3,
=91 —a2)} —22(1—a2) 1 180 (1 —x2)E—9(1 —a2)} for N=4. (85)

M

I

Although the coefficients in these functions appear to be relatively simple rational numbers,
no method has been found for computing them without explicitly evaluatmg N by N
determinants.

According to (33) the assumption (60) should lead to the largest discrepancies from
condition (11) at ¢ = 0. The deviations of the functions (85) from the value 1 are therefore
a measure of the precision with which the assumption (60) and the conditions (76) and
(77) approximate the original boundary conditions (11). The functions (85) are listed in
table 1.

TABLE 1
N=1 2 3 4
0 1-500 0-833 1-167 0-900
01 1-499 0-850 1-155 0-925
0-2 1-470 0-882 1103 0-976
0-3 1-430 0-938 1-039 1-033
0-4 1-385 1-009 0-981 1-065
05 1-299 1-082 0-947 1-047
0-6 1-200 1-147 0-960 0-994
0-7 1-069 1-176 1-023 0-954
0-8 0-900 1-140 1-112 1-002
0-9 0-654 0-951 1-097 1-114
0-95 0-468 0-729 0-924 1-046
1.0 0-000 0-000 0-000 0:000

The case N = 0 follows from (74), (78), and (82) and gives in accordance with (75) that
(1/w) du/dt ~ }(1—x2)~* whose average is indeed equal to 1, but which is still far from the
required constant value 1.

The deceleration which is experienced by an impinging rigid disk is large compared
to g, if the kinetic energy of the disk corresponds to some reasonable height of fall and the
semi-infinite elastic body does not have any exceptional values for the elastic constants.

Although there is no particular difficulty connected with the weight term Mg in (77),
' 22-2
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this term will be neglected henceforth. The stress distribution (60) is then simply pro-
portional to the initial speed w of the rigid disk. In terms of the variables ¥ and y the only
parameters of the theory are then the ratio £ of (1) and the group of constants which occurs
in the left-hand side of (78). If the rigid disk is replaced by a rigid cylinder of radius 7,
thickness #, and density p,, and if p is the density of the semi-infinite elastic solid, then the
quantity

2p,71
E—— 86
1=k (86)

can be chosen as second parameter of the theory.

6. RESOLUTION INTO MODES
If the system of N+ 1 linear equations (78) and (79) is solved, the result can be written as

20(n+4) »\  wy G,(y)
RN BN CT e (R (O (87)
with the following notation
Hy(y) Hyly) ... Hyo(y) Hypa(y) ... Hpy(y) |
G,(y) = (—1)" Hz(g(y) HZI:(?/) Hzn—:l(y) H2n+1(y) szx;(y) , (88)
CHa) Ho®) oo Hyols) Hyorls) o Hyly)
Gl) =1 2 G,(y) G,(o), (59)
H) = 3 pyndl (90)

= 1.3...(2n+1)"

If the Laplace transform is inverted with the help of the ordinary complex inversion formula,
the result is

w XN J7T 2% y) ev®iry dy
My 2 (] 2)( ‘;g) omi ) 277)0 ) gH(y)? (91)
ou X y) evtiroy dy r’
TR %JQ% +wm@@”% .
©  D(L+1) (—=1)*P)
2 4\ _~\2Tm el S I e A, 93
b, (x%y) o F( 143 )F( W, —n— x2) > ()H'l) Y (93)

The path of the integration over y is parallel to the imaginary axis with a positive value for
the real part of y.

The functions &,, G,, and H,, are holomorphic in the whole complex y plane. The only
singularities in the integrands of (91) and (92) are poles which arise at the zeros of the
denominator ,/(2m) G(y) + ¢H(y). These zeros lie on the curves where

Qy) = J(2m) G(y)[H(y) (94)

becomes real and negative. The asymptotic expansions of G, and H,, show that these func-
tions have an oscillatory behaviour similar to the exponential function. There seem to exist
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a countable infinity of curves with a real negative value for (), and on each one of them
Q(y) takes on the particular value —¢. Assume therefore that the equation

Qly) =—q¢<0, J(y) >0 (95)

has the solutions y,, with m = 0, 1, ... in the upper half of the y plane, arranged according
to increasing absolute value. A detailed examination of various asymptotic expansions
(cf. the expansions quoted at the end of appendix D) shows that the integrals (92) and (93)
can be evaluated by summing over the contributions from the poles y,, and their complex

conjugates.
Therefore,
w eu(btiro) N /aG (¥,) ( 7.2);1—%] )
— Y NI\ Ym) (T l. conj. (9
7 2 () 1agian L G () Jeemelconic (00
ou @ y el N A r ) .
%= T Q] o L 22 " Cove) G ) |+ compl. comi. o7

o and du/dt are represented as sums over stress distributions and velocity distributions in
brackets, each such distribution being multiplied by a time dependent factor of the type
exp [y(bt[ry)]- The set of complex frequencies # ' by, is obviously the same for o and for du/dt.

With the approximations implied in (60), (76), and (77) these complex frequencies
solve the following problem: suppose that a rigid circular disk of radius 7, and mass M,
which is glued to the plane boundary of a semi-infinite elastic body, is driven by an external
force in such a manner that the rigid disk performs a harmonic exponentially damped
motion of the complex circular frequency 751by. For which values of ¥ does the external
driving force vanish for the case of perfect lubrication in the area of contact? The frequencies
Y,, and the corresponding stress distributions which would result from an exact treatment
of the above problem are now called the modes of vibration for the rigid disk with perfect
lubrication.

Even if all the modes were known from an exact treatment, only a finite number of them
would be taken into account in a practical description of the motion of the impinging disk.
Also, in a numerical computation N remains finite. It must therefore be investigated how
many modes have to be obtained so that the motion of the impinging disk can be ade-
quately described, and which modes can be adequately obtained with a given N.

A detailed examination of the asymptotic expansions for #,, G,, H,,, and for the derived
functions G,, G, H would presumably give the answer. But rather than to go into these
lengthy computations, which would be involved because N by N determinants have to be
discussed, the author prefers to make the following conjectures. The real and imaginary
parts of the complex frequency y,, increase at least linearly with respect to m. Therefore,
only the lowest modes persist over a certain length of time. The stress distribution for a given
mode y,, has m zeros so that for a given N only the modesy,, y, ...,y yareadequately obtained,
i.e. they lead to distributions of normal displacement with only small deviations from the
average displacement. The other roots of equation (95) give only stress distributions and
corresponding distributions of normal displacement whose sum leads to the initial distribu-
tions (75) and (85). The description of a certain mode is then not improved substantially
by increasing N much beyond its order. But the initial amplitude and phase angle of that
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mode may still depend on N to a great extent, because they are mainly determined by the
initial distributions of stress and normal displacement and these latter depend very much
on N as was shown in the previous section.

7. ApprLICATION OF CAGNIARD’S METHOD

The formula (62) for «* is valid along the whole boundary of the clastic solid. A similar
expression is found for v* along the boundary. Formulae resembling (62) can also be ob-
tained in a straightforward manner for «* and ¢* inside the clastic solid. Owing to the
particular assumption (60) all these expressions can be evaluated by Cagniard’s method
(1939) even though the source of elastic waves is extended over a non-vanishing portion
of the boundary. As an example the normal displacement along the boundary will be dis-
cussed.

Suppose first that the following decomposition has been performed.

@ (12Nt 4p2 (k) f
(1--2p2)2—4p%af  1+8p2+ (24 —16k2)p* +16(1 —k~2) pb
— 1 ( . Ll ___,Ml Nl )
AR U 1202 14 m2p? 1 n2p?
Y (e L M N,
JFN/(1+,02)( 214122 1+m2p2_1+n2p2)’ (98)

for which the details can be found in appendix E. For the sake of mathematical rigour
each term has to be considered separately. Each term f{p) can be expanded in powers of p
with coeflicients y, of which actually all the odd ones vanish.

o)

J(p) 'Ejhﬂa y,=0, for A=1,3,.... (99)

The partial sums of the series (99) are called

Se) =S 1t (100)

With the help of the formulae (cf. Whittaker & Watson 1952)

(B0, = <~1>"“22¢V;1 3, (f Hﬁl)ﬂ' [e(—2i) =741 e~ (200) 7=+-1], (101)
Je =1 ;e‘g“"“’d“” (102)

the expression (62) can be written after some reduction for a typical term of (98) as

~702( 4y (J )fy()é (,,(é%t?;ﬁg% i:dw

< [ ApLA) =S, ) et v —igp) -+t — o s i) s

—n 3 (=4 Y 10 S [T dem) Toaten) d, (103

y=0
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where the functions 7', ,({) are defined by
_ 1 E wt+m! 1) v —ig(93F) v~
T,5(8) = % 2 (v—p) Lu! [ef(—2i{)7-r—ei(2i0) " #] for A<,

T | VB it o v it (03 e (104)

() = §ﬂ=A§V+1 =) L [e*(—2if) 7+ —e (21f)7#] for A>w.
All the integrals in (103) are convergent and the interchange of the w integration with the
p integration can be justified.

The integration over p in the second part of (103) can be performed with the help of (16)
and the result is zero if x > 1. The first part in (103) is now transformed according to Cag-
niard’s method. First the p integration is deformed in the complex p plane so as to go along
the positive or the negative imaginary axis in such a way that the argument of the various
exponential functions always become real and negative. With the new variable p’ = +ip
and § given by xsin§ = 1, formula (103) becomes

-7 éo ( _4)VF<1j/—7|; —%) fv(y> ‘u,é() G%%???L] ( ):

( ) - %j:;d“’f:dp Lf(ip) —S,4,(10)] {—exp [pxy (sind+sinw)] (—2yp) 7~+—...}

in o
+2_17“,J_3dw fo dp[f(ip) =S, (p)] {exp [—pay(sind+sinw)] (2yp) >~ #+...}. (105)

The prime on p’ has been omitted for simplicity, The second terms in the braces (indicated
by a few dots) are formally identical to the first; but whereas the poles and branch points
in the first terms are avoided by going above the real p axis, the poles and branch points in
the second terms are avoided by going below the real p axis.

A new variable of integration is now introduced into the p integration, by putting
0 = —xp (sinw+sind) for —(3n) <w< —§ and by putting § = xp (sinw+-sind) for
—8 < w < (3m). After interchanging the ¢ integration with the w integration and com-
bining the two parts of the w integration, expression (105) becomes

n 3 ot i 8 G e [ e

1 (+in ) . o 0
“ %f_%”dw Lf(lp) _Sﬂ+v (1p>] p ’ub“é {

below p axisp - i_;XSil’l 0] }‘
(106)

p .
above p axis 1-+xsmw

Instead of using the integration variable w, it is again an advantage to use p with the
understanding that # remains constant as p varies from 0(1-+x)~! up to +oo0 and from
—6@(x—1)~1 down to — o0. The resulting integral can be written as a contour integral in
the complex p plane if the integrand is made one-valued with the help of two cuts along the
real axis: one from £~1, 1, or (x+ 1) ~1, whichever is smallest, to + 0o ; and another one from
—k~1, —1, 0r —@(x—1)"1, whichever is largest, to —oco. The contour C'starts atf(x+1)"1,
goes to oo along the upper side of the real axis, swings around to —co on a large circle in
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the uppér half-plane, and comes finally up from —o0 to —0(x—1)~! along the upper-
side of the real axis. (106) becomes

—rovzwg (—1) -~~(%~1)—fv(y) ('Ej ok /)l)' ?;!”y‘”‘ﬂ f:e“y" dg

- B ‘ . —v-idp j
x{'é%";(xwl) fc[ flip) =S, ,(ip)] J{[a/(x—l—l) — A1) (x—1) 1} T OPL i?’i)}

where all the roots are defined to be positive for p = 0.

If all the terms of (98) are taken together, the integrand of the p integral has only the real
poles at 4-{~!in the p plane with the cuts as prescribed above. The contour C can be deformed
so as to run directly from ¢(x+1)~! down to —@(x—1)~! along the real axis. If therefore
at kf < x—1 for the first terms or if # < x—1 for the second terms of the decomposition
(98), the integral over p in (107) is real and the braces in (107) vanish. The ¢ integration in
(107) goes only from ® to 0o, where k0 = x—1 for the first terms and ® = x—1 for the

second terms in (98). The contribution of S, , (ip) to (107) contains the expression

(zt/f)‘l_” v [ o © [ p~idp )
2 ) T I I I LV ea e

where the summation over x goes from 0 to v for A < », and from A—v-1 to v for A = ».
As A < 2v this can be evaluated directly and is then found to vanish. If therefore the lower
limit of the 0 integration is replaced by @, the term S, ,(ip) can be dropped altogether from
the p integral in (107). The expansion (99) and the use of the polynomials (100) is now seen
to be purely auxiliary, in order to insure the legitimacy of the various manipulations in this
section; but it does not enter the final result. Itis then possible to write

PO SR N A PPN R0 |l
R IR e A e T TR AL R (108)

Wi(y, x) is the Laplace transform of the function W,[(bt/r,), (/r,)] which is defined as
follows

W, (0,x) = W(0, x) -+ W2(0, x), (109)
with W (0, x) given by
=0 for k0 <x—1.
1 (e p~rdp ( L, M, N, )
- -~ . s NC1+ 35— 1Tt 1 Tt
7 fo/(xﬂ) (=) Hp**—(0—p)*} +12 m*p?—1 " n¥p?—1
L + h(—1)H for x—1 <kl <x+1
Tay () = (10173 2B =) Ji— (10— 1)) - ’
) L, l“l Ly(—Dr1 x-F1 x+1
BN N, G A L RN e N (2o E S S A
=0 for lﬁ>x+1, (110)

and with W@(0, x) given by a similar set of formulae which is obtained formally from (110)
by putting £ = 1 and replacing the index 1 by 2. The integral in (110) is a complete elliptic
integral whose evaluation is straightforward. The algebraic termsin (110) have to be omitted
if the roots become imaginary.
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The expression (108) is the Laplace transform of (1/b) (0u/d¢) and appears as the product
of two Laplace transforms whose original functions are known. With the help of (87) and
(95) it follows that

1du = X 2 (—1)”w+p)! ép(y)yl—v—ﬂey(bﬂro)

Wi % %5 Fe—)lal  H) [@Q/d)
The fact has been used that the power series expansion of G, (y) starts with y2. This follows
directly from the definition of G,(y), as well as from (33). Formula (111) shows that (1/w)
(0u/dt) becomes the sum of exponentially damped harmonics if /¢ > r+7,, i.e. as soon as
sufficient time has elapsed to allow a Rayleigh wave to be propagated over the distance 7+ 1.

bilrg r
f W, (0, _) dg.  (111)
YA 7’0

v+
0 #

8. NUMERICAL EVALUATION

As the power series (72), (80), and (81) converge quite well, it is natural to use them for
the numerical computation of «*, G,, and H,,. The practical merit of the conditions (76)
and (77) is that they lead to power series whose coeflicients can be generated by three-term
recursion formulas. It is tempting to use the asymptotic expansions in order to obtain
expressions for #*, G,, and H,, which are useful in the numerical computation of the higher
modes. The main obstacle against the use of the asymptotic expansionsis that their coefficients
cannot be obtained by simple recursion formulae.

The decomposition (98) can be written symbolically as

o 1
(14+20%)2—4p%f 20 (14 92%)e-1+¥(1 4 5%p2)1°

where © stands for the coefficients C}, —L,, etc. and the numbers ¢ and 5 are determined
for each term in (98) by the conditions

71> 19, {

(112)

e=1—=>p=1%1 or =1,
=3 1 } (113)

6=0-=>79=0.

The details of assigning ¥, d, €, 7 to the terms of (98) are given in appendix E. From the inte-
gral

w_ R ,m,)»flélgwwﬂ_,»lu _ F(é‘-—%.f) F[%(S—f— 1)] 1 o 1. 2 /2
Jo s el PG Vi k-8t (g
and from (24) and (25) it follows that
I'e—1s
P(5) = 30 pormprs o F a6t ekl 10, (1)

If 5 is a positive integer, say A, the hypergeometric functions on the right-hand side can be
generated by successive application of the well-known recursion formulae for the hyper-
geometric function starting from A = 0, 1, 2, and 3. The recursion formulae are given in
appendix F together with the hypergeometric functions for A = 0, 1, 2, 3 which turn out to
be elementary functions of the argument [1— (§%/y?)]. ,

The hypergeometric functions F(} —44, —n—44; 1, %) in (72) and (93) are polynomials
in 2, because one of the two first parameters 4 — 41 or —z— A is always a negative integer.
For A = 0, 1, 2, 3 these polynomials are easily obtained by writing down the hypergeometric

23 Vor. 255. A.
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series which defines F(3—3A, —n—13A; 1; x2). For higher values of the positive integer A
these polynomials can be generated by successive application of the three-term recursion
formula which is derived in appendix F.

The digital computer at the author’s disposal (Elecom 120) works normally with 8 deci-
mals. From the asymptotic behaviour of the coefficients in the power series (80) and (81)
it seemed unreasonable to expect reliable results for |y| > 8. Also, the asymptotic expansions
for (80) and (81) seemed to indicate that not more than three solutions of (95) are within
that distance from the origin. In view of the speculations at the end of §6 and because of
the fact that the computing time is proportional to (N+1)2, it was decided to put N = 2
in (60) and all the subsequent formulae. If one looks at (85) and its numerical values, the
case N = 2 appears to be the first in which the boundary condition (1/w) (du/dt) = const.
for r < 7, is crudely approximated even at ¢ = 0. No effort was made to study numerically
the effect of N on the approximation of the first modes.

The computations were performed for k2 = 3, 4, 5, 6, 8, 10, 20, 100. In all these cases not
more than the first two modes could be found. The parameter g of (86) was varied in the
range 0 < ¢ < 4. Equation (95) was solved indirectly, i.e. with a given value of £2, and for
fixed real (imaginary) part y’ of y the imaginary (real) part y” was determined by iteration
such that the imaginary part of @ (y) vanished. This gave for each value of £% and for each
mode a set of complex frequencies y with corresponding values for ¢, between which a four-
point interpolation could be made. All the numbers in the tables constitute therefore
interpolated values.

In order to examine the precision with which the modes are described for N = 2, the
normal displacements «* given by (72) and (87) were computed as functions of r/r, for
k* =3, 5, 8, 20. The deviations of 4* from its mean value are always largest at r = 0. For
the lowest (zero) mode and for ¢ < 4 this deviation never exceeded 10~ of the mean value.
It appears therefore that the complex frequencies of the lowest modes are determined with
at least that accuracy by taking N = 2. For the first mode the derivation at r = 0 is much
larger and increases with decreasing value of ¢. For ¢ > 1 the deviation does not exceed
10~! of the average value, but it increases up to three times that ratio as ¢ is around 1.
Nevertheless, it is conjectured that the complex frequencies of the first modes are actually
determined with much better accuracy than it would appear from looking at the deviations
of u* from its average value for a given N. The reason for this confidence is, of course, that
the determination of the complex frequencies for the various modes by equation (77)
involves only the average normal displacement. The only way to settle this equation about
the accuracy of the complex frequencies for the first mode would be to compute them for
higher values of N. It must be realized, however, that the distribution of normal stress in
the area of contact is known for each mode only with a relative accuracy equal to the relative
deviation of the normal displacement from its average value.

The formulae (96), (97), and (111) are useful only if the summation over the modes does
not have to be carried very far. In order to make the present calculations useful, one has to
be able to show that only the lowest and first modes are important. This requires a good
knowledge of the initial amplitude and phase angle for each mode. There is considerable
doubt as to the accuracy of these quantities with the present low value of N = 2. But
it is hoped that the present method determines the initial amplitudes and phase angles
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with a relative accuracy comparable to the relative deviation of the normal displacement
from its average value. With this hypothesis it is possible to gain an idea about the conver-
gence of the summation over all modes, such as in (96), (97), and (111). This convergence
is, of course, slowest for £ = 0. On the other hand, it may be expected that the normal
velocity at time ¢ = 0 is positive for each mode, and the sum of these normal velocities equals
the velocity w of the impinging disk. If (97) is integrated over 7 with the help of appendix C
and evaluated at ¢ = 0, it follows with (89) and (94) that

$ Q
/EOSA:l, SA:ngvan‘zZi?/y:y (116)
where each term is positive. The value of the terms A = 0 and A = 1 (figure 1) together with
their sum (figure 2) have been computed for £2 = 38, 5, 8, 20 and 0 < ¢ < 4. Itis felt from
looking at the graphs of these quantities, that the convergence of the summation over the
modes is indeed quite fair. This point of view is, of course, supported by the fact that during
the numerical computations, the complex frequency of the third mode was found to lie
outside a circle around the origin with radius 8, so that its contribution is probably very
highly damped, compared to the first mode whose damping constant lies between 2 and 3.

It is not the intention of this report to record all the information which was obtained from
the numerical calculations, but only what is directly related to the motion of the disk. None
of the results concerning the stress distribution in the contact area will be listed and discussed,
because they would be of interest mainly in calculating the waves generated by the imping-
ing disk according to (111).

Table 2 gives the length of the half-period for the lowest mode taking as unit of time
2r,/b, i.e. the time it takes a shear wave in the solid to travel across the diameter of the disk.
Table 2 gives the damping factor for the lowest mode, i.e. the fraction by which the ampli-
tude is reduced in half a period of the damped oscillation. If we write the complex frequency
y = —y'+1y”, table 2 gives the value of 27/y” and table 2 gives the value of exp [—n(y'[y")].
These results are given numerically rather than graphically, because the numbers for the
same value of ¢ but different values of £2 are so close together that they could not be sepa-
rated in a graph of reasonable size. Thisimplies that at least for £2 > 3 the complex frequency
of the lowest mode depends essentially only on the parameter g of (86) and on the shear wave
velocity of the elastic solid (through the time unit 27,/b), but not on Poisson’s ratio. This
result seems plausible because the stress distribution for the same total force exerted on
the disk does not depend on Poisson’s ratio in the static limit as shown by (33).

If the average normal velocity is written as

w%R,\exp(—ocAt) cos (wyt—¢,), (117)

where the index A refers to the various modes and w is the initial velocity of the impinging
disk, then R, may be called the absolute value of the velocity amplitudes. The values of
R, are plotted in figure 3 against ¢ for various values of k2. If R, and R, are comparable for
large values of ¢, the first mode dampens out much faster. Indeed, the lowest mode is reduced
during one-half of its period by a factor exp [ —n(ay/w,)], whereas the first mode is reduced
in the same time interval by a factor exp [ —7(«,/w,)]. The first mode is therefore reduced by

an additional factor exp [—7(a, —a,)/w,] compared to the lowest mode. The values of
23-2
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Ficure 2. Total velocity at time ¢ = 0 if only the two lowest modes are taken into account.
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m(a; —ay) /0, are plotted in figure 4. It is evident that the contribution of the first mode to the
average normal velocity has practically vanished after one half-period of the lowest mode.
The time derivative of (117) can be written as

—w Y R /(o] +0f) exp (—ayf)sin (0 t+P,+¢,), tany, = a,/0,. (118)
p)
TABLE 2
q k? = 4 5 6 8 10 20 100

0-1 5-4557 5-1525 4-9951 4-8987 4-7872 4-7247 4-6095 4-5262
0-2 3-9058 3-6933 3-5845 3:5165 3-4443 3-4028 3-3313 3-2737
0-3 3-2287 3-0579 2-9714 2-9197 2-8615 2-8297 27674 2-7333
0-4 2-8318 2-6856 2-6130 2-5702 2-5220 2-4960 2-4503 2-4198
0-5 2-5654 2-4367 2-3734 2-3368 2-2959 2-2741 2-2365 2-2121
0-6 2-3725 2-2570 2-2008 2-1687 2-1334 2-1148 2-0833 2:0633

07 22257 2-1204 2:0702 2:0417 2-0106 1-9945 1-9677 1-9513
0-8 2:1098 2:0132 1-9678 1-9422 1-9148 1-9007 1-8775 1-8640
09 2:0162 1-9269 1-8853 1:8622 1-8380 1-8255 1-8056 1-7942
1-0 1-9391 1-8559 1-8179 1:7968 1-7749 1-7642 1-7470 1-7374
1-2 1-8201 1-7470 1-7146 1-6970 1-6793 1-6710 1-6578 1-6510
1-4 1-7334 1-6682 1-6406 1-6260 1-6115 1-:6046 1-5944 1:5895
1-6 1-6685 1-6104 1-5861 1-5736 1-5615 1-56560 1-5481 1-5445
1-8 1-6192 1-5666 1-5453 1-56346 1-5245 1-5199 1-5137 1-5111
20 1:5812 1:5335 1-5146 1-5053 1-4967 1-4929 1-4879 1-4859
2:4 1-5292 1-4889 1-4738 1-4666 1-4602 1-4575 1-4540 1-4527
2-8 1-4982 1:4635 1-4510 1-4451 1-4401 1-4379 1-4352 1-4343
32 1-4803 1-4498 1-4390 1-4341 1-4299 1-4281 1:4259 1-4249
36 1-4709 1-4434 1-4339 1-4282 1-4258 1-4234 1-4223 1-4212
40 1-4670 1-4417 1-4330 1-4291 1-4257 1-4243 1-4223 1-4212
TABLE 3
q k2 =3 4 5 6 8 10 20 100
0-1 0:6950 0:6823 0-6731 0:6665 0-6575 0-6517 0-6472 0-6287
0-2 0-5960 0-5804 0-5705 0-5612 0-5510 0-5443 0-5307 0-5182
03 0-5284 0-5115 0-4997 0-4912 0-4801 0-4731 0-4586 0-4465
04 0-4767 0-4580 0-4468 0-4381 0:4268 0-4198 0-4054 0-3936
05 0-4347 0-4165 0-4047 0:3955 0-3843 0-3773 0-3634 0-3521
0-6 0-3993 0-3809 0-3686 0-3601 0-3490 0-3423 0-3289 0-3182
0-7 0-3689 0-3505 0:3383 0-3300 0-3192 0-3128 0-2999 0-2899
0-8 0-3423 0-3241 0-3121 0-:3039 0-2936 0-2876 0-2752 0-2658
0-9 0-3188 0-3007 0-2890 0-2811 0-2712 0-2652 0-2537 0-2449
1-0 0-2977 0-2799 0-2686 0-2606 0-2513 0-2457 0-2349 0-2267
1-2 0-2617 0:2446 0-2339 0-2268 0-2180 0-2130 0-2034 0-1964
14 0-2318 0-2154 0-2055 0-1990 0-1912 0-1866 0-1782 0-1721
16 0-2067 0-1913 0-1821 0-1761 0-1690 0-1650 0-1575 0-1523
1-8 0-1853 0-1709 0-1624 0-1569 0-1506 0:1470 0-1404 0-1359
2:0 0-1671 0-1535 0-1457 0-1408 0-1351 0-1318 0-1261 0-1221
24 0-1377 0:1259 0-1193 0-1152 0-1106 0-1080 - 0-1034 0-1004
28 0-1154 0:1052 0:0996 0:0959 0:0925 0-:0904 0-0866 0-0844
32 0:0982 0-0894 0-0847 0-0819 0-0787 0-:0770 0-:0740 0-0721
36 0-0849 0-0770 0-0731 0:0707 0:0681 0-:0666 0-:0642 0-0626
40 0:0744 0:0675 0-0640 0-0621 0-05697 0-0585 0-:0564 0-0551

It represents the average normal acceleration. Even for it the contribution of the first
mode has practically vanished after a time interval which is of the order of one half-period
of the lowest mode. The time at which the average normal acceleration vanishes is therefore
essentially determined by the lowest mode alone. This time can be called the rebound time,
because the disk would lose contact with the elastic solid as soon as the average normal
acceleration changes sign, if the disk is not glued to the elastic solid. Relative to the half-
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Ficure 3. Velocity amplitude of the two lowest modes.
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Ficure 4, Natural logarithm of the ratio between the amplitudes of the lowest mode and
the first mode after a half-period of the lowest mode.
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Ficure 5. Rebound time of the disk relative to a half-period of the lowest mode.
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Ficure 6. Ratio of rebound height to the height from which the disk was dropped.
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period of the lowest mode the rebound time is given by 1 —[ (¢, --,) /7], which is plotted in
figure 5 against ¢ for various values of k2. The ratio A of the initial speed of the rigid disk to
its speed at the time of rebound is given by

A= Bato s exp{—nlaofon) (1 (o - Yol (119)

0]

This is plotted in figure 6 against ¢ for various values of £2. If the rigid disk is assumed to
have acquired its initial speed by dropping from a certain height, then it would rebound
to a height whose ratio to the height of drop is given by the square of (119).

It is a pleasure to acknowledge the help of Miss E. E. Allen and of Dr A. S. Ginzbarg
who wrote the program and performed all the calculations for this work on the Elecom 120
computer.

APPENDIX A

An upper bound for the matrix (C’C)™ has to be found in order to investigate the con-

vergence of the expansions (45). Therefore put CC” = E— B, where E is the unit matrix.

1 mo]

B, = 1) El e for m >,
12 1
Bll = %5 l%] ‘/1+%)2 and Blm - Bml'
From the inequality
m 1 m+1 dx
........... =1 +1)—In(l+1
1+1/1+%<L+1 X n(m 1) —ln (1),
it follows that B,y n (mf,;zl(),n—_lr[l)(l4— 2

which holds even for m = [ provided [/ approaches m continuously on the right-hand side.
Define now two functions B(g, 1) and D(g, A) by

B(u,A) =B, for m<p<m+1l, [<A<I+1;
lnp—Ind )
D(p, ) = = for =1, 1=1;
_ _ g :
D) = Ddop) = sy for =1, 0=d <1

D(p, ) :7—:5 for 0<u<l, 0<AKLI.
Because of the inequality B(p, 1) < D(u,A) and

(Br+ly = j :d/ll j :d/InB(,u,/ll) B(AyA,) ... B, &),
with m< p<m+1andk <k < k-1, it follows that

(B < f:d/ll...f:d/l,,D(m-H,/ll)D(/lz,/ll) DA, k1),
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where the fact that the function D(g, A) is continuous has been used. The integrations over A
are splitin two parts, from 0 to 1 and from 1 toco. In the first part D(g, 1) is constant (equal
to its value for A = 1). This leads only the following integrals to be computed.

In A —ln,u Inl,—Ind; Ink—InA
(n) 1 n
Dy = 2n+2f da,. f da, /1 P 1

with # > 1 and « < 1. With the new variables

p=Ink, oc=Ind, 7=Inu

the integral D{ becomes after some reduction

nt+l 0 4 — _— —
Dm — (-1_) e—%(p+7)f do, f do, — 21T L) il W )
Jo 0

#e o \2m? "sinh 4(0; —7) sinh (0p,—0y) "sinh(p—0,)"

As it is sufficient to have an upper bound for D{), insert the inequality

P—0,
sink [3(p—0,)] =

and the new variables of integration

Ei=0,—7, E=0y—0p..., £, =0,—0,

whose limits are now extended from — co to -+ co. Thus

D<n><2e~%<p+v>(i)"“ [T [T, b b
1K 2m? o ) —o "sinhif, ""'sinh $£,°

where the integral

o EdE€ _ _
f_wsmhlg 1__ d 8(1+32—|— —l—...)-77
is used, so that finally for g > 1l and « > 1
1
(1)
D < T K

The following inequality is readily obtained

wln;t<1
=W (1) ~m

In combining these results it follows that

B(u, 1) for 0<A<1, pg>1

" 11 1)\ 1
B < o+ 7) T gD

which is true even for n = 0, as follows immediately from the initial inequality of this
appendix. From

for mk=0,1,2,...,

(CCY¥+1 — (E—B)¥+1 < E+(N+ Y B+ (N+1)Bz+...
the inequality (46) follows at once. '

24 Vor. 255. A.
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ArpENDIX B
Consider in the complex ¢ plane the integral

1
| (=)= (1) (- z) e de
A I eI RN
with arbitrary exponents @ and f, and positive integer y. The path surrounds the points 1 and
z counterclockwise and is assumed to be initially far out on the real positive axis with the
phase of ¢ —z between — 37 and + 47 and the phases of (/—1) and (¢+1) zero. If z is taken

sufficiently close to 1, one can write

L (z_~1)~~/(t+1>~ﬁ+v~l(1+1t§f)"“dt

2mJ ¢ 1

0

=3 (W) u-args[ -

m=

The integral on the right-hand side is 1/(y+m—1)! times the (y-+m—1)th derivative of
(¢+1)=Ftr=Lat ¢ = 1, so that the left-hand side becomes

® (—a -f+y— ) _ 271 (y— ,6’) ( l——z)
o () g 2329,
2, ) 0= ) 2 = rgyen e s
Now make the following specialization: Put z = cosh 2§ with real { > 0, @ = n-3+A4,
with an integer n > 0, f = —A, y = 1; choose as path of integration the circle with centre
at ¢ = cosh 2{ and radius equal to sinh 2£. Introduce the variable 0 by
¢ = cosh 26 +sinh 28, (0 < 0 < 2m).
The expression
£?—1

7t = m = cosh 2 +sinh 2¢ cos

is then purely real and positive along the path of integration. This gives the integral
representation

. 2772 n+¥
13 2 — /i 21
Flnr-344, —2;1;3(1—cosh 2€)) = Qﬂf (H_t) p2hdo.
The phase angle of
on?
‘i{]l:'t - Shg(coshgTsmhge”‘e)

is always between — }m and + }, and the values for  and for 27— 0 are complex conjugate.
This determines the root of 292(1 +¢)~! uniquely as

2/(cosh§) (coshg+sinhEe )b = /{(n+e8) (ef+n)} Fig{(n—e ) (1)}

with the upper sign for 0 < § < 7, the lower for 7 << 0 < 27. The variable 5 is now used in-
stead of # as variable of integration, and the interval of integration is split into two parts at
0 = m. With

2pdy 2y dy
sin2fsing (%= p?) (f—e %)}

the integral representation (66) follows at once.

df = —
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AppeNDIX G
In computing the averages (76) and (77) it is advantageous to use the variable

{=J(1—4%), {d{=—=xdx.

Ifa™ = a(a+1) ... (a+m—1) and a® = 1 with ™ = 0 as soon as one of the factors vanishes,
one can write the following sequence of equations

1 o (L__12\m)( _yp__1))\m) p1
fF(%—%A,—n—%A;l;xz)xdx: 3 (E—3)" (=n—34) f x2m x dx
0

m=0 10m) 1(m) 0
1 © (1 __10\m( __gp__12)m)
T2 go(z 2 )1<m(>2<m> A4 (-3, —n—$25231)
_ T(n+2-+%)
TG T2+ 34

In the last step the formula of Gauss for the hypergeometric function of unit argument has
been used (cf. Whittaker & Watson 1952), which is also quoted in appendix F. The function
(80) arises from inserting the last formula into (72) and using (25).

From the integral (cf. Erdelyi 1954)

e _ L) - 3)
fog Py, (€) dE = 2l(l—v+1) D(I4v+3)

which is assumed to vanish if /—v+1 is zero or a negative integer, it follows that

L 1 L(m+1)T(1+3) (—1)
fo(l—ﬁ) Po(Q)dC=5 2 50 ) T v +8) Tim—i 1)’

which is again assumed to be zero for m < v. With the help of the elementary formula

L (= (=mp

I'm—I[+1) I'(m+-1)

it follows again from Gauss’s formula for the hypergeometric function of unit argument
that

_¢2ym _ (=T 1) P(y+4) P(m 1)
[ a-empy - S (m—y+ D) T+ )T tm 1)’

which again has to vanish for m < v. Therefore the equation

1 (—1PTr+1) 2 (GF—3)™ (—p—30)m
(1 1) __p_ 1211 __¢F2 — N T v a’ _\2 2 2
[ Fa—ih - i1-0) P ac =\ R 5 e R

is obtained which is easily reduced to a hypergeometric function of unit argument. The
preceding integral becomes

(=1 T +3) TEA+3) TEA+n+1) D(n+A+1)

N+ 1) T — v+ D TEA+n—v+1) T+ A+ 1) T+ +31+3)

and vanishes as soon as one of the arguments in the I'" functions of the denominator is zero
or a negative integer. The functions (81) arise from inserting the last expression into (72) and
using (25).

24-2
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ApprEnDIX D
The method for deriving an asymptotic expansion is the same for G,(y) as for H,,(y).
The computations will be performed explicitly only for the former. Equation (80) can be
written as an integral of the Barnes type, namely

. JF st 4+ Fdn+54+3) (I +3)
“omi) T T2 49 T+

Gal I'(—s) P(s) (29)*ds,

where the path of integration in the complex s plane is restricted by the condition
—1 < Z(s) < 0. P(s) is now expressed by the integral (26) into which the decomposition
(98) is inserted. The path of integration C'in (26) can then be deformed at the same time as
the cuts which join the branch points +1i and -ik~1. The new cuts go from i or +1k~!
along the positive imaginary axis toco and from —ior —ik~! along the negative imaginary
to —o0o. The new path of integration comes from co down along the positive imaginary
axis on its negative side, goes around the branch point --ior -+ik~!, and goes again up to oo
along the positive imaginary axis on its positive side. A similar path surrounds the cuton the
negative imaginary axis. After some obvious transformations to describe this new path,
the expression for P(s) becomes

P(s) = T(1+15) (3 —1s) cos dr (s4+1)

[fk . k/;pds_l +f Jp ds (C ~)]

The p integration can be interchanged with the s integration, leaving the following integral
over s

JF 2”“{“25‘!‘4) I'3n+3s+2) M(ds+3)
2m) Tn+1+3)Tn+2+Ls) T(Ls+3)
XxI'(=)T'(1+3s) (3~ )sm11(1+ws) 5 (2yp)* ds.

With the help of the formulae (25) the integrand can be simplified somewhat and gives

L (LGt sstd) Ddnts+8) DE—3) TE=39) () vg
2771 D(n-+145s) I‘(n+2+2s) m(s+1)

This integral converges as long as |arg y| < 47, i.e. y has a positive real part (p is always real
positive). It can be shown that under this condition an asymptotic expansion for this latter
integral is obtained by simply pulling the path of s integration to the left across the poles

of the integrand. The first of these poles is located at s = —1, so that the first term of an
asymptotic expansion of G,(y) is given by the integral

I'(in+4) T 2”‘1‘4) [f _ptdp f ~ldﬂ )]

M0+ }) s (-1 J—n) ) |

whose value reduces indeed to (82) with the help of (25), if the poles at -/ are treated with
sufficient care.

It is, of course, desirable to find asymptotic expansions for G, (y) and H,,,(y) which are valid
in the whole complex y plane. In order to do this the last s integral has to be rewritten in
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such a form as to be convergent in a wider domain of the variable yp. As this s integral repre-
sents essentially a generalized hypergeometric function of y (this follows if the path of the s
integration is pulled to the right across the poles at s =1, 3, 5, ...), it can be treated quite
systematically by the method which was devised by Barnes (19o6). This treatment is,
however, quite clumsy in the present case, and must be applied with some caution, because
logarithmic terms appear. It is sufficient to quote the result, i.e. the leading terms which
occur in addition to (82), (83), and (84) for Zy < 0, namely,

Gy(y) ~ £i(=1)r b Jmy=nHLy (B2 12) 7 4 Ly(1 —12) "] exp (—2y/l),
H,,(y) ~ (—=1)ws1 0t fry=n=1 [Ly (k2 —12) 724 Ly(1 — 12)H] exp (—2y/1).

The double sign is connected with the condition |argy-+in| < 7.

ArPENDIX E

The denominator in the second expression of (98) is written as
1-+8p2+ (24 —16k~2) pt4-16(1 —£~2) p®
— 16(1—k2) (g2 172) (924 m72) (20
— (1480 (1+m%?) (14n%?)

with the convention /2 < |m?| < |n%|. The coeflicients of the decomposition (98) are then

given explicitly by
k 1
C=snmrry T inmEy
Y k=3 (K2—2)%x*— (k*—3k24-4) x2 4 8(k*— 2k%4-2)
a1k (P=y?) (*—2) :
Y kT ket —8(k*—2k% 1 2) x2 - 8(k*—2k21-2)
a0 =) (P2 ’

where (x, y, z) is a cyclic permutation of ([, m, n).
There are two essentially different cases, which both occur in practice.

(1) P2<1<k<|m? <|n?,
(2) 12<1 < |m?| < |n?| <K

The distribution of'y, 4, ¢, 7 is the following (each term being characterized by its coefficient) :

first case second case

1’_*‘&_——'—\ f‘——-k——“'”ﬂ
c, 0 0 k2 — 0 0 k2 —
¢, 0 01 — 001 —
L, 1 1 k2 2 1 1 k2 2
L, 1 11 p 111 2
M, 1 5 m? k? 1 1 k2 m?
M, 1 &+ m?2 1 1 1 m? 1
N, 1 % n%2 k2 1 1 k2 n?
N, 1 % n2 1 1 3+ m?2 1
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APpENDIX I
The general recursion formula

(c—b) F(a,b—1;c;x)+ (20—c—bx+ax) F(a,byc;x) +b(x—1) F(a,b+1;¢;x%) =0

can be proved directly by inserting the hypergeometric series for each one of the hyper-
geometric functions. The interesting initial values are the following:

F(1,1585%) = %ﬁ—i{%‘%a F(1,253;%) = ‘2“‘(“11_X> (Nzcrf/?iln_\/;)”l)’
F(1,3;3;%) = lix, F(1,3;%;x) %%%;—3

F(%,158;%) = gl/xl 8‘11—%;’ F(3,2:8;%) = 4;x1°g}iﬁ+2(1l~x)’
F(4,3:85%) Zy(ll_xy F(},3:35%) = 21:_(,%5)

In order to compute F(§—3A, —n—3$4;1;x2) for large values of A, a recursion formula
will now be established which connects the three hypergeometric functions

Fla—1,b—1;c¢;x), F(a,b;c;x), and F(a+1,b+1;¢;x).
A formula of the following type is assumed
(1—x)2F(a+1,b+1;5¢;x) +(A+Bx) F(a,b;¢;x)+CFla—1,b—15¢; %) = 0.

If the hypergeometric functions are replaced by the corresponding hypergeometric series,
the coeflicients of each power of ¥ must vanish identically. Taking in particular x7*!, the
following condition arises

(a+n)(a-+n+1) (b+n) (b-+n-+1)—2(a+n) (b-+n) (c+n) (n+1) -
+(c+n+1) (c+n)n(n+1)+Aab (a+n) (b+n)+Bab(c-+n) (n+1)
+C(a—1)a(b—1)b =0,
which has to hold for all integers n > —1. As the terms in #® and n* cancel each other,
the numbers 4, B, C have to be determined as functions of a, b, ¢ in such a manner that the

terms in 72, n!, and n° vanish. This leads to three linear equations in 4, B, C with the deter-
minant given by

© ah? abe  abla—1) (b—1) |
ab(a+-b) ab(c+1) 0 ifa3b3(a~—l)(b—l) (a+b—c—1).

} ab ab 0

As in the present case ¢ = 1 and a < 0, b < 0, this determinant is different from zero and
the numbers 4, B, C can be determined.
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A simpler system of equations can be obtained by considering the following special cases
of the assumed formula.

(1) Consider the terms in x°.

(2) Putx = 0 using F(a,b;¢;0) =1

(3) Put x = 1 using the formula of Gauss.

F(d, b; c; 1) — F(ﬁ_)_y.(c_f_a___[&

(cf. Whittaker & Watson 1952). This gives the three following equations
Aa?b?+- Babc+Cab(a—1) (b—1) = —ab(a+1) (b+1) + 2abc,
44+C=—1,
A(c—a) (c—b)+B(c—a) (c—b)+C(c—a—b) (¢c+1—a—b) =0,
whose determinant is equal to a?%(1 +¢— b — a). The resulting recursion formula is given by

mc—b—a+1 a b
c—b—a—1c—ac—b

+[(1+ —b—atl o bb)(l—-x)

Fla—1,b—1;¢;x) = (1—x)2F(a+1,b+1;¢;x)

—a—1c—ac—
(c—a—b) (c—a— b+l) :l
-+ (c—a) (c—B) Fla,b;c;x).
In the hypergeometric function of interest, a = 3 —34, 6 = —n—4A, and ¢ = 1.
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